Proof of an open problem on the Sombor index
نویسندگان
چکیده
The Sombor index is one of the geometry-based descriptors, which was defined as $$\begin{aligned} SO(G)=\sum _{uv\in E(G)}\sqrt{d^{2}_{u}+d^{2}_{v}}, \end{aligned}$$ where $$d_{u}$$ (resp. $$d_{v}$$ ) denotes degree vertex u v) in G. In this note, we determine graphs among set with connectivity edge connectivity) at most k having maximum and minimum indices, solves an open problem on proposed by Hayat Rehman [On a given number cut-vertices, MATCH Commun. Math. Comput. Chem. 89 (2023) 437–450]. For some conclusions above paper, first give counterexamples, then provide another simple proof about indices n vertices, cut vertices least cycle.
منابع مشابه
the problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولan investigation of the impact of self monitoring on langauge teachers motivational practice and its effect on learners motivation
the central purpose of this study was to conduct a case study about the role of self monitoring in teacher’s use of motivational strategies. furthermore it focused on how these strategies affected students’ motivational behavior. although many studies have been done to investigate teachers’ motivational strategies use (cheng & d?rnyei, 2007; d?rnyei & csizer, 1998; green, 2001, guilloteaux & d?...
The open quadrant problem: A topological proof
In this work we present a new polynomial map f := (f1, f2) : R → R whose image is the open quadrant Q := {x > 0, y > 0} ⊂ R. The proof of this fact involves arguments of topological nature that avoid hard computer calculations. In addition each polynomial fi ∈ R[x, y] has degree ≤ 16 and only 11 monomials, becoming the simplest known map solving the open quadrant problem.
متن کاملProof of An Open Problem in Sphere Methods for LP
Consider the linear program (LP): minimize z = cx, subject to Ax ≥ b, where A is an m × n matrix. Sphere methods (SMs) for solving this LP were introduced in Murty [2006-1, 2], even though this name was not used there. Theorems in those papers claimed that a version of this method needs at most O(m) iterations to solve this LP, however Mirzaian [2007] pointed out an error in the proofs of these...
متن کاملA Proof of Stanley’s Open Problem
In the open problem session of the FPSAC’03, R.P. Stanley gave an open problem about a certain sum of the Schur functions (See [19]). The purpose of this paper is to give a proof of this open problem. The proof consists of three steps. At the first step we express the sum by a Pfaffian as an application of our minor summation formula ([7]). In the second step we prove a Pfaffian analogue of Cau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Computing
سال: 2023
ISSN: ['1865-2085', '1598-5865']
DOI: https://doi.org/10.1007/s12190-023-01843-1